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Abstract
Square L×L (L = 24–128) Ising lattices with nearest neighbour ferromagnetic
exchange are considered using free boundary conditions at which boundary
magnetic fields ±h are applied, i.e., at the two boundary rows ending at the
lower left corner a field +h acts, while at the two boundary rows ending at
the upper right corner a field −h acts. For temperatures T less than the critical
temperature Tc of the bulk, this boundary condition leads to the formation of two
domains with opposite orientations of the magnetization direction, separated
by an interface which for T larger than the filling transition temperature T f (h)

runs from the upper left corner to the lower right corner, while for T < T f (h)

this interface is localized either close to the lower left corner or close to the
upper right corner. Numerous theoretical predictions for the critical behaviour
of this ‘corner wetting’ or ‘wedge filling’ transition are tested by Monte Carlo
simulations. In particular, it is shown that for T = T f (h) the magnetization
profile m(z) in the z-direction normal to the interface is simply linear and the
interfacial width scales as w ∝ L, while for T > T f (h) it scales as w ∝ √

L.
The distribution P(�) of the interface position � (measured along the z-direction
from the corners) decays exponentially for T < T f (h) from either corner, is
essentially flat for T = T f (h) and is a Gaussian centred at the middle of the
diagonal for T > T f (h). Furthermore, the Monte Carlo data are compatible
with 〈�〉 ∝ (T f (h) − T )−1 and a finite size scaling of the total magnetization
according to M(L, T ) = M̃{(1 − T/T f (h))ν⊥ L} with ν⊥ = 1. Unlike the
findings for critical wetting in the thin film geometry of the Ising model, the
Monte Carlo results for corner wetting are in very good agreement with the
theoretical predictions.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

It was pointed out 25 years ago that one may have a thermodynamic surface transition
(=singularity of the surface excess free energy associated with a wall confining a semi-infinite
fluid at gas–liquid coexistence, or related systems) from a ‘nonwet’ to a ‘wet’ state of a
surface [1, 2]. Since then the possibility of a second order wetting transition and the associated
critical behaviour for wetting with short range surface forces has attracted enormous theoretical
attention [3–15], although the conditions to observe this phenomenon in the laboratory are very
restrictive [16, 17]. However, both experiments [16, 17] and simulations [12–15] could only
observe mean field critical behaviour, the interesting nontrivial critical exponents predicted by
renormalization group methods [7–11] could not be verified and to date the reasons for this
discrepancy are not entirely clear [6]. The situation is somewhat better for the case of the
semi-infinite Ising square lattice with a free boundary at x = 0, where then a boundary field h
is applied: the exact solution of Abraham et al [18–20] allows us to locate the line h = hc(T )

at which the critical wetting transition occurs exactly, and to obtain also the associated critical
exponents (βs = 1, ν⊥ = 1, ν‖ = 2). These exponents characterize how the interface distance
〈�〉 unbinds from the wall {〈�〉 ∝ (hc(T ) − h)−βs } and the correlation length of interfacial
fluctuations ξ⊥, ξ‖ in the directions perpendicular and parallel to the interface, respectively
{ξ⊥ ∝ (hc(T ) − h)−ν⊥ , ξ‖ ∝ (hc(T ) − h)−ν‖ }. However Monte Carlo simulations found that
also in this model the range of |hc(T ) − h| where these exponents actually can be observed is
extremely small [21].

Very recently it was pointed out [22–25] that the filling transition of wedges in d = 3
dimensions [26–28] or the two-dimensional counterpart of corner wetting [29–33] provide
further possibilities to study critical wetting. In particular, the critical exponents describing
corner wetting are also believed to be known exactly, and for a rectangular corner the critical
line hc(T ) is also known [31]

cosh(2hc(T )/kB T ) = cosh(2J/kB T ) − exp(−2J/kB T ) sinh2(2J/kB T ). (1)

While this result for low temperatures also is compatible with calculations in the solid-on-solid
approximation [34, 35], we are not aware of any extensive numerical tests of the predicted
critical behaviour for this corner wetting transition yet.

Hence the present paper intends to fill this gap, presenting the first Monte Carlo study
of corner wetting in the two-dimensional Ising square, including a discussion on how this
transition shows up in a finite size scaling context [36]. Section 2 will briefly summarize the
theoretical predictions on the critical behaviour that will be tested, while section 3 presents the
Monte Carlo results. A brief summary is then given in section 4.

2. Theoretical background

The geometry of the Ising square lattice and its boundary conditions that are considered here
is sketched in figure 1. We consider temperatures T < Tc, the critical temperature of the
Ising model in the bulk two-dimensional geometry, and a strength h of the boundary fields ±h
applied in figure 1 less than the critical field hc(T ) (that is believed to be known exactly and is
given by equation (1)). In the limit L → ∞ there will be a spontaneous magnetization in the
system, which may be either positive or negative (the latter case is assumed in figure 1), and
an interface will be present at an average distance 〈�0〉 in the z-direction (figure 1). In the case
where the spontaneous magnetization has the opposite sign, the interface will be at a distance
〈�0〉 from the upper right corner rather than from the lower left corner (x = 0, y = 0), of
course, since there is a perfect symmetry with respect to the sign of the total magnetization of
the system present.
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Figure 1. Simulation geometry of the L × L Ising square lattice. Free boundary conditions are
used for the spins in rows nx = 1,nx = L , ny = 1 and ny = L , with the integers (nx , ny) ∈ [1, L]
labelling the lattice sites. In addition, on all spins in the rows nx = 1 and ny = 1 acts a field
h; on all spins in the rows nx = L and ny = L acts a field −h. A typical configuration of the
system for T < Tc then contains an interface running on average normal to the z-direction from
some point in the row ny = 1 to a point in the row nx = 1 at the system boundaries, separating
a domain of positive magnetization (+) from a domain with negative magnetization (−). The
distance of the interface from the lower left corner is denoted by �0. Fluctuations of the interface
are characterized by correlation lengths ξx and ξ⊥ in the directions parallel and perpendicular to
the interface, respectively.

The theory of corner wetting (or wedge filling, respectively) asserts that the transition
occurs when the contact angle � (describing droplets on a planar interface in the regime of
incomplete wetting) satisfies the equation

�(hc(T )) = π/2 − φ (2)

where φ is the angle that the wedge makes with the z-direction (figure 1). In our case φ = π/4,
of course. For the present model the transition is of second order and hence one expects power
law divergences of both the mean distance 〈�0〉 of the interface in the z-direction from the
corner to which it is bound, and the parallel (ξx) and perpendicular (ξ⊥) correlation lengths
describing the fluctuations of the actual interface height �0 = �(x = 0) in the directions
parallel and perpendicular to the interface, respectively [29–33],

〈�0〉 ∝ t−βs , ξ⊥ ∝ t−ν⊥ , ξx ∝ t−νx , t = hc(T ) − h, (3)

and the predicted critical exponents take the values

βs = 1, ν⊥ = 1, and νx = 1. (4)

The probability distribution of the interface height takes the general form

P(�0, t) ∝ 1

〈�0〉P
(

�0

〈�0〉 ,
ξ⊥
〈�0〉

)
. (5)

Interestingly, the last argument can be omitted in the vicinity of the transition because both
the mean value 〈�0〉 of the interface from the corner to which it is bound and its fluctuation
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ξ⊥ diverge with the same exponent. Moreover, for small enough t the distribution of �0 is
predicted to be a simple exponential,

P(�0) = 1

〈�0〉 exp

(
− �0

〈�0〉
)

, t → 0+. (6)

Of course, all these results, equations (3)–(6), apply when we first take the limit L → ∞ and
the limit t → 0 afterwards. It is also of interest to ask what happens when the limits are taken
in the inverse order. Then, Parry et al [30] predict that

P(�0, t = 0) = 1

L
, L → ∞, (7)

and the magnetization profile m(z) along the z axis is simply a straight line,

m(z) = mb

(
1 − 2z

L

)
, t = 0, L → ∞, 0 � z � L . (8)

In equations (7) and (8) we have chosen
√

2 as the length unit in the z-direction (the actual
distance between the lower left corner and the upper right corner is

√
2L lattice spacings, of

course), and mb is the spontaneous magnetization of an Ising model in the bulk at the considered
temperature. It is also clear that for large L equation (6) also needs to be symmetrized with
respect to both corners to which the interface can be bound, i.e.,

P(�0) = 1

2〈�0〉
{

exp

(
− �

〈�0〉
)

+ exp

(
− [L − �0]

〈�0〉
)}

. (9)

Equation (9) is supposed to hold for t → 0+, i.e., in the region of incomplete corner
wetting. In the opposite regime, t < 0, the average location of the interface is a straight line
running from the upper left corner to the lower right corner, and hence

〈�0〉 = L/2 and P(�0) ∝ exp

(
− [�0 − 〈�0〉]2

2ξ2
⊥

)
(10)

with [31]

ξ⊥ ∝ L1/2. (11)

It is also of interest to consider the distribution P̃(m) of the magnetization of the Ising square
with the boundary conditions specified by figure 1. For t < 0 the result that the average
location of the interface is the straight line normal to the z-direction connecting the corners of
the square implies that the average magnetization 〈m〉 = 0, and the Gaussian distribution to
�0 translates into a Gaussian distribution of the magnetization,

P̃(m) ∝ exp

(
− m2 L2

2kB T χL

)
with χL ∝ ξ2

⊥ ∝ L . (12)

Similar to the interface localization transition for the slit geometry [37–39], in the case t < 0
where the interface is not bound to a wall (or a corner, respectively) one is in a ‘soft mode’
phase where both correlation lengths (ξ‖ ∝ L, ξ⊥ ∝ L1/2) and the susceptibility χL diverge
as L → ∞. Note that equation (11) can simply be interpreted in terms of a random walk
description of an interface in d = 2 dimensions, where excursions in normal direction to the
average interface orientation add up randomly [40].

It is useful to relate the interface position �0 to the magnetization. For t > 0 the interface
is bound to the lower left corner at a distance 〈�0〉. Given the complete interface configuration
�(x) we can calculate the magnetization via

m[�(x)] = −mb

(
1 − 2

L2

∫ L

0
dx �(x)

)
. (13)
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Of course, even the average interface configuration only becomes a straight line normal to the
z-axis in the limit t → 0, while it is curved towards the corner for positive t . Nevertheless, in
the vicinity of the corner wetting transition, we can approximate the magnetization by

m ≈ −mb

(
1 − 2

�2
0

L2

)
, L → ∞. (14)

In the following we rather work with the absolute value |m| of the magnetization, because
states with positive and negative magnetization are equally probable, depending on to which
corner the interface is bound. The probability distribution P(�0) then yields an approximation
for the probability distribution of the magnetization

P̃(|m|) ≈ L

2mb
√

2(1 − |m|/mb)
P

(
�0 = L

√
(1 − |m|/mb)/2

)
. (15)

Note that in this approximation P̃(m) has an integrable singularity at m = ±mb. If
equation (14) were correct those values of the magnetization would correspond to the extreme
values �0 = 0 or L. Clearly, equation (13) breaks down in this limit, because there are
microscopic enrichment layers at the surfaces which prevent the magnetization from adopting
those limiting values. Nevertheless, we expect the probability distribution of the magnetization
to be strongly peaked for t � 0.

Right at the transition (t = 0), the probability distribution of �0 is flat (cf equation (7)) and
equation (15) yields 〈|m|〉 ≈ 2mb/3. Although this is not meant as an exact result, it already
suggests a finite size scaling structure of the magnetization 〈m〉. We assume a dependence
on L/〈�0〉 or—since 〈�0〉 and ξ⊥ have the same exponent—on L/ξ⊥. Thus, we conclude that
〈|m|〉 should scale as follows:

〈|m|〉 = mbm̃(L/ξ⊥) = mbm̃(Lt), L → ∞, t → 0, |Lt| finite, (16)

where we have used the prediction that ν⊥ = 1.
Note that unlike critical phenomena in the bulk, where a scaling power L−β/ν appears

when β is a nontrivial order parameter exponent [41], no such scaling power appears here.
This result is intuitively clear from geometric reasons (and also obvious from equation (14)):
when we consider the limit L → ∞ at fixed t > 0 on the one hand, we obtain 〈m〉 = ±mb,
because the correction due to the oppositely magnetized domain in one of the corners becomes
negligibly small, 〈�0〉 staying finite when L → ∞. In this sense we asymptotically have a
transition where the magnetization of the Ising lattice vanishes discontinuously at t → 0 when
the limit L → ∞ is taken first. On the other hand, for any finite L this transition is clearly
rounded. Already for t > 0 there is a finite nonzero probability that m = 0 in the Ising square
occurs, and there is no spontaneous symmetry breaking.

Analogous arguments suggest a related scaling for the susceptibility of the finite square

kB Tχ = L2(〈m2〉 − 〈|m|〉2) = L2χ̃(Lt). (17)

3. Numerical results

Standard single-spin-flip Monte Carlo runs using the Metropolis algorithm [42–44] have been
performed. We vary the system size L from 32 to 128. Averages were taken over runs of
1 × 106–2 × 106 Monte Carlo steps/spin (MCS) duration, after discarding 1 × 105–2 × 105

MCS for equilibrium. In order to improve the statistics, we made up to eight independent runs
for each of the parameters studied.

Figure 2 shows typical snapshots of the system configuration. One sees qualitatively the
expected behaviour: for h = 0.60 (i.e., t > 0) the interface is clearly localized close to a corner
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Figure 2. Snapshot pictures for L = 128, T = 0.5 (in units of the bulk critical temperature) and
for different fields h (in units of J): h = 0.60, 0.61, 0.62 and 0.63. Note, however, that the critical
field occurs at hc = 0.606. Up spins are represented by black squares, while down spins are left
white.

– 16 – 8 0 8 16
x

0

8

16

l(x
)

h = 0.595
h = 0.597
h = 0.599

Figure 3. Average interface position for L = 64 and T = 0.5. The values of the magnetic field
h < hc are indicated in the key. Symbols refer to Monte Carlo data, while the curves present fits
according to l(x) = A + B ln[1 + C exp(x/D) + C exp(−x/D)] with four parameters A, B, C, D.
We have rotated the x-axis by 45◦ compared to figure 1, in order to use the same notation as in [22].

of the square, while in the other cases the distance �0 of the interface from either corner is rather
large. Of course, the interface position is strongly fluctuating, and also for L = 128 the corner
wetting transition is clearly affected by finite size rounding effects. Therefore an inspection
of snapshot pictures cannot suffice for a quantitative characterization of the transition, and a
more detailed analysis is required.

The average location of the interface in the wedge for the same temperature as above
and h < hc is shown in figure 3. Qualitatively, the interface position can be fitted by an
expression of the form l(x) = A + B ln[1 + C exp(x/D) + C exp(−x/D)], where A, B, C
and D are fitting parameters. This functional form is suggested by mean field calculations
using an effective interface Hamiltonian [22]. Compared to figure 1 the x-axis is rotated by
45◦ in accord with [22] (cf figure 3). With four free fitting parameters, however, we cannot
obtain perfect agreement with our Monte Carlo data. This might point to important fluctuation
effects, which are not accounted for in the mean field treatment. The figure also reveals the
deficiency of approximation (14), which relates the magnetization to the distance l0.
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Figure 4. Probability distribution P(�0 ) of the interface position along the z-direction for T = 0.85,
L = 32, and eight different fields h as indicated in the figure (note that hc(T ) ≈ 0.3 here).
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Figure 5. Probability distribution of the magnetization at the filling transition h = 0.375. The
inset plots the data with the factor

√
(1 − |m|/mb) with mb = 0.914 as suggested by equation (15).

Figure 4 now presents the probability distribution P(�0) of the interface position, in order
to provide a first test of equations (7), (9) and (10): indeed one can nicely see the exponential
decays near the corners for t > 0 (cf equation (9)), the essentially flat behaviour of P(�0) for
t = 0 (cf equation (7)) and the Gaussian behaviour for t < 0 (cf equation (10)).

The probability distribution of the magnetization is presented in figure 5. The distribution
at the filling transition is indeed independent of the system size. The distribution shows
pronounced peaks near to m = ±mb ≈ ±1, and the singularity can be much reduced by
multiplying the data by the factor

√
1 − |m|/mb as suggested by equation (15). Except for

the vicinity of the boundaries m = ±mb the function
√

1 − |m|/mb P(m) is rather flat, which
corresponds to a flat distribution of l as shown in figure 4. The typical frequency of transitions
between the two equivalent interface positions is proportional to P(m = 0).

Figure 6 then tests the predicted divergence of 〈�0〉 as t → 0. Again the predicted
behaviour 〈�0〉 ∝ t−1 according to equation (3) is straightforwardly verified.
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Figure 6. Interface position 〈�0〉 plotted versus {[hc(T ) − h]/hc(T )}−1, for three different
temperatures: T = 0.5 (circles), 0.7 (squares) and 0.85 (diamonds). Filled symbols refer to
L = 32; open symbols refer to L = 128. For hc(T ) the theoretical values from equation (1) were
used.
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16
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96
mb(1 – 2z/L)

Figure 7. Normalized magnetization profiles m(z) versus (z − 1)/(L − 1) for four different
choices of L at T = 0.75 and h = hc(T ) = 0.4. The broken line displays the asymptotic
result, equation (8). Note that the abscissa variable is used to convert the integer indices for lattice
coordinates 1, 2, . . . , L to a continuous variable in the interval from zero to unity, irrespective to
the choice of L . The inset shows a linear plot of the width W versus L , to demonstrate the linear
variation.

Also the expected linear variation of the magnetization profile along the diagonal for t = 0
is clearly seen in our simulations, and the approach to the asymptotic formula equation (8) as
L increases is rather rapid. Indeed, at t = 0 the width W of the magnetization profile scales
linearly with L, as it should (cf figure 7 inset). In contrast, if we are in the region where the
interface is no longer bound to a corner, the magnetization profile is not at all linear (cf figure 8).
In fact, it can rather be fitted to a tanh-function, and from the slope at the midpoint (dm(z)/dz at
the point where m(z) = 0) we again extract W . The inset shows that the prediction W ∝ L1/2

(cf equation (11)) is well confirmed.
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Figure 8. The same as figure 7, but for h = 1.0. The insets show W versus L in a linear–linear
plot (lower inset) and in the form W versus L1/2 (upper inset).
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Figure 9. Absolute value of the total magnetization M(L , T ) ≡ 〈|m|〉 plotted versus temperature
for h = 0.125 (upper part) and data rescaled against the scaling variable |1 − T/Tf (h)|ν⊥ L =
|1 − T/T f |L (lower part). Linear dimensions L ranging from 24 to 128 are included, as indicated.

Next we turn to the analysis of the total magnetization. Figures 9–12 present the results
for different surface fields. Note that we can either approach the corner wetting transition by
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Figure 10. The same as figure 9, but for h = 0.25.

varying T at fixed h (as done in figures 9–11) or by varying the surface field h at fixed T (as
done in figure 12). Then the transition line T = Tf (h) simply denotes the inverse function
of h = hc(T ). Since there is no power of L prefactor in equation (16), this equation implies
that for t = 0 all curves M(L, T ) versus T should intersect in a common intersection point,
independent of L, and this indeed is verified. Actually, the value of the magnetization at this
intersection point 〈|m|〉/mb is around 0.75.

Finally, in figure 13 we present a scaling plot of the susceptibility at low temperatures (a)
and closer to the bulk critical point (b). Again the Monte Carlo data are compatible with the
predicted scaling behaviour in equation (17), although it is difficult to obtain good statistics
for this quantity at low temperatures due to protracted long correlation times.

4. Summary

We have presented an extensive Monte Carlo study of corner wetting in two dimensions.
The two-dimensional case poses a rather stringent test on the theory of Parry et al [29–33]
because there are detailed predictions not only for the critical exponents but also for the scaling
functions. Moreover, the simulations are facilitated by the exact knowledge of the location of
the transition in the thermodynamic limit, and rather large systems are accessible to simulations
in two dimensions. In contrast to critical wetting on planar substrates [12–17], our Monte Carlo
results do corroborate the theoretical prediction. Most notably, we confirm the value of the
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Figure 11. The same as figure 9, but for h = 0.5.

critical exponents β0 = ν⊥ = 1. It would also be interesting to test the predictions in the case
where the opening angle tends towards π ; in this limit we would gradually approach critical
wetting on a planar substrate.

Additionally, the simulations reveal rather pronounced finite size effects, which set in
already when the distance of the interface �0 from the corner is a finite (and rather small)
fraction of the system size. We employ a naive mapping between the distance �0 and the order
parameter, the total magnetization m of the square. While this is sufficient to motivate the finite
size scaling of the order parameter, we also observe deviations from this naive approach. For
instance, at the transition the probability distribution of �0 is uniform and our naive mapping
suggests that the magnetization adopts the value 2mb/3. While the independence of this
value from the system size is supported by our Monte Carlo data, the actual value is somewhat
larger. A quantitative relation between the probability distribution of �0 and the order parameter
requires knowledge of the entire interface configuration. We have presented the Monte Carlo
data of this quantity, but a theoretical prediction which takes due account of fluctuations is—to
the best of our knowledge—not available.

Our simulations have been restricted to temperatures not too close to the bulk critical point
in order to separate the effects of wetting and bulk criticality. For even smaller surface fields,
the corner wetting transition gradually approaches the bulk critical point, and we anticipate a
rich interplay between both phenomena.
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Figure 12. Absolute value of the total magnetization M(L , h) ≡ 〈|m|〉 plotted versus field for
T = 0.5 (upper part) and data rescaled against the scaling variable |1 − h/hc(T )|L (lower part).
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Figure 13. Scaling plot of the susceptibility χ(t < 0) or χ ′(t > 0) versus |t|L , for the case
T = 0.5 (a) and the case T = 0.85 (b). Note that kB Tχ = 〈m2〉L2, kB Tχ ′ ≡ (〈m2〉 − 〈|m|〉2)L2

is used [44]. Linear dimensions from L = 32 to 128 are included, as indicated in the figure.
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